
The ECoS Toolbox User Guide

Version 1.24

Michael J. Watts
mike.watts.net.nz

March 8, 2016

2

Contents

1 Introduction 5

2 Data Tools 7
2.1 Introduction . 7
2.2 2dat . 7
2.3 2flat . 7
2.4 shuffle . 8
2.5 mapshuffle . 8
2.6 concat . 8
2.7 hconcat . 9
2.8 getrows . 9
2.9 arff2dat . 9
2.10 dat2arff . 10
2.11 accuracy . 10

3 EFuNN Tools 13
3.1 Introduction . 13
3.2 CreateEFuNN . 14
3.3 TrainEFuNN . 14
3.4 RecallEFuNN . 15
3.5 MakEFuNNLbl . 16
3.6 REEFuNN . 16
3.7 RIEFuNN . 17

4 SECoS Tools 19
4.1 Introduction . 19
4.2 CreateSECoS . 20
4.3 TrainSECoS . 20
4.4 RecallSECoS . 21
4.5 SECoSFRE . 22
4.6 SECoSFRI . 22
4.7 GetSECoSEx . 22
4.8 CompileSECoS . 23

5 ECM Tools 25
5.1 Introduction . 25
5.2 TrainECM . 25
5.3 ClusterECM . 26

3

4 CONTENTS

6 NECoS Tools 27
6.1 Introduction . 27
6.2 CreateNECoS . 28
6.3 TrainNECoS . 28
6.4 RecallNECoS . 29
6.5 GetNECoSEx . 30
6.6 GetNECoSSignals . 30

7 Fuzzy Tools 31
7.1 Introduction . 31
7.2 MakMFLbl . 31
7.3 MakMF . 32
7.4 GetNumMF . 32
7.5 FR2MF . 32
7.6 mPlotMF . 33
7.7 SFIE . 33

A File Formats 35
A.1 Data File Format . 35
A.2 EFuNN File Format . 36
A.3 SECoS File Format . 39
A.4 NECoS File Format . 41
A.5 ECoS Train Log Format . 43
A.6 Fuzzy MF Label File Format . 45
A.7 Fuzzy MF File Format . 46
A.8 Fuzzy Rule File Format . 49

Chapter 1

Introduction

This document gives an overview of the use of the tools in the ECoS toolbox.
The ECoS toolbox provides a collection of Windows command line applications
that implement and support selected algorithms from the Evolving Connection-
ist System (ECoS) family. These selected algorithms include the Evolving Fuzzy
Neural Network (EFuNN, Chapter 3), the Simple Evolving Connectionist Sys-
tems (SECoS, Chapter 4) and the Evolving Clustering Method (ECM, Chapter
5). There are also tools for formatting and manipulating data (Chapter 2) and
for working with fuzzy membership functions (MF) and rules (Chapter 7). The
tools present in this toolbox were selected to support data modelling and data
mining via fuzzy rule discovery. For a comprehensive over-view of the ECoS
algorithms implemented in this toolbox, please see the following paper:

Watts, M.J. A Decade of Kasabov’s Evolving Connectionist Systems: A Review.
IEEE Transactions on Systems, Man and Cybernetics Part C - Applications and
Reviews (2009) 39(3) 253-269.

The design philosophy of this toolbox is that each tool should do one thing
well. Therefore, each tool will perform one and only one function. As command
line applications, it is possible to string these tools together in batch files or
using scripting languages such as Python, to perform complex operations.

Each application in this toolbox accept parameters in one of two ways, either
from command line arguments (for those applications that have only a few
parameters) or from parameter files (for those applications that have more than
a few parameters). Parameter files are text files that have tag and value pairs,
for example:

Inputs 4

InputMF {3,3,3,3}

Rules 1

OutputMF {2,2,2}

Outputs 3

FileName "iris-EFuNN.wgt"

This example is for the CreateEFuNN tool (Section 3.2). In this example,
Inputs, InputMF, Rules, OutputMF, Outputs, and FileName are all tags. Tags

5

6 CHAPTER 1. INTRODUCTION

are case sensitive and must be unique within a parameter file (if there are two
or more copies of a tag in a parameter file, then only the first will be used).
Tags can be in any position within the file and do not need to be on separate
lines. Arguments must be separated from their tags by whitespace.

The arguments to Inputs, Rule and Outputs are numeric and are not de-
limited in any way. The argument to FileName is a string argument. String
arguments are delimited with quotes ("). The arguments to the InputMF and
OutputMF tags are arrays. Arrays are delimited by braces (started by { and
ended with }) and entries are separated by commas. Comments can be inserted
into parameter files, and are begun and ended by the hash (#) character. The
escape character is the backslash (\) character.

Examples of each of the parameter files, and each of the data, network and
fuzzy membership function files, are included in the egs directory.

Chapter 2

Data Processing Tools

2.1 Introduction

The applications in the ECoS toolbox load data from files of a certain format
(see Section A.1 for an example). Attempting to load data that is not properly
formatted will cause the tools to fail. The tools in this chapter allow the user
to move data to and from this format, and to manipulate files that are in this
format.

2.2 2dat

The 2dat application converts flat data files to the format required by ECoS
tools. The application assumes that the number of input and output variables
are the same for each row, and that the numbers supplied as parameters are
accurate: The resulting data file will be packed with zeros if these numbers are
not accurate. An example of the data file format is shown in Section A.1.

2dat SourceFile DestinationFile rows input outputs

Where:
SourceFile is the flat format file to load the data from.
DestinationFile is the formatted file to save the data to.
rows is the number of rows in the flat file.
inputs is the number of input columns in the flat file.
outputs is the number of output columns in the flat file.

2.3 2flat

Converts formatted data files to flat files, that is, files with no formatting.

2flat SourceFile DestinationFile [s,c,t]

7

8 CHAPTER 2. DATA TOOLS

Where:
SourceFile is the formatted file.
DestinationFile is the flat file to save to.
[s,c,t] is an optional argument (without brackets) for a delimiter, where s is
space (default), c is comma and t is tab.

2.4 shuffle

The shuffle tool will randomly re-arrange the order of the rows in a data file
and write the results to another file. The final order of the rows is optionally
written to another file. There are two mandatory and one optional argument
to the shuffle application:

shuffle SourceFile DestinationFile MapFile

Where:
SourceFile is the data file to shuffle.
DestinationFile is the file to write the shuffled data to.
MapFile is an optional argument. If this argument is specified then a second
data file will be written, which has the same number of rows as the SourceFile.
Each row consists of a single value. This value specifies the row number that
that row was shifted to during the shuffling process. For example, if the contents
of the third row of the map file was 72, then that means that the third row in
SourceFile is now row 72 in DestinationFile. This is useful as map files tend
to be much smaller than shuffled data files. Thus, if it ever becomes necessary
to re-create the shuffled data file, the map file can be used with the mapshuffle
application (Section 2.5) to re-generate the shuffled data.

2.5 mapshuffle

The map shuffle tool will re-order the rows in a data file according to the sup-
plied map file. That is, it will shuffle the rows deterministically. This application
has three mandatory arguments.

mapshuffle SourceFile MapFile DestinationFile

Where:
SourceFile is the data file to r-order.
MapFile specifies the new order of the rows. There must be one row in this file
for each row in SourceFile. The contents of each row specify the destination
row of that row in SourceFile. The map files produced by the shuffle applica-
tion (Section 2.4) are automatically in the right format.
DestinationFile is the file to write the re-ordered data to.

2.6 concat

The concat tool concatenates multiple data files together. There is a variable
number of arguments for this tool.

2.7. HCONCAT 9

concat File1 File2 ... FileN DestinationFile

Where:
File1 ... FileN are the source files. Each file must have the same number of
inputs and outputs.
DestinationFile is the file to save the concatenated data to.

2.7 hconcat

This application is similar to the concat tool (Section 2.6) but instead of con-
catenating files to the end of one another, it will concatenate files horizontally.
Input columns are concatenated with input columns, and outputs with outputs.
Thus, given two data files with two input columns and one output column, the
output of this tool will be one file with four input columns and two output
columns.

As with the concat application, the number of arguments is variable:

hconcat File1 File2 ... FileN DestinationFile

Where:
File1 ... FileN are the source files. Each file must have the same number of
rows.
DestinationFile is the file to save the concatenated data to.

2.8 getrows

This tool is used to extract specific rows from a data file. The argument to this
application is a parameter file that must be of the following format:

SourceFile "iris.trn"

DestinationFile "iris-sub.dat"

Rows {0,10,20}

Where:
SourceFile is a string argument specifying the file to load the source data from.
DestinationFile is a string argument specifying the file to save the extracted
data rows to.
Rows is an array argument that specifies which rows to extract. These rows are
numbered starting from zero. In this example, the first, eleventh and twenty-
first rows will be extracted.

2.9 arff2dat

Converts an ARFF format file as used by tools like WEKA to the DAT format
required by the ECoS tools. It assumes that the input attributes are NUMERIC
or REAL type, it doesn’t yet handle encoding of nominal attributes.

10 CHAPTER 2. DATA TOOLS

arff2dat ARFF.file dat.file

Where:
ARFF.file is the ARFF format file to convert.
dat.file is the formatted file to save the data to.

2.10 dat2arff

This tool converts DAT-format files to the ARFF format used by tools like
WEKA. The argument to this application is a parameter file that must be of
the following format:

SourceFile "iris.trn"

DestinationFile "iris.arff"

RelationName "Iris"

InputNames {sepallength,sepalwidth,petallength,petalwidth}

OutputMasks {1:0:0,0:1:0,0:0:1}

OutputTags {Iris-setosa,Iris-versicolor,Iris-virginica}

Where:
SourceFile is a string argument specifying the DAT file to convert.
DestinationFile is a string argument specifying the ARFF file name.
RelationName is a string argument that contains the contents of the @RELA-
TION tag in the ARFF file.
InputNames is an array of strings that specify the names of the input variables.
OutputMasks is an array of strings that specify the output vectors that describe
each class. There must be as many masks as there are output variables in the
DAT file. Elements in the mask are delimited by colons. There must be as
many elements in each mask as there are output variables in the DAT file.
OutputTags is an array of strings that specify the name of each class. There
must be as many elements in this array as there are output variables in the DAT
file. Output tags will be selected by matching output vectors with the output
masks. If no match is found an error will occur.

2.11 accuracy

The accuracy tool will calculate several percentage classification accuracies. It
will load two data files and compare the output values between them. The ar-
guments for this tool are:

accuracy Template.dat Actual.dat Threshold

Where:
Template.dat is the data file that contains the target output values.
Actual.dat is the output values produced by a classification algorithm.
Threshold is a floating-point value. Any value above the Threshold value will

2.11. ACCURACY 11

be considered to be a positive example. Any value below the Threshold value
will be considered to be a negative example.

Accuracies will be calculated for each output variable in the data files. The
number of outputs in the Template must match the number of outputs in the
Actual. Accuracies calculated are:

• Number of true positives (TruePositives)

• Number of true negatives (TrueNegatives)

• Number of false positives (FalsePositives)

• Number of false negatives (FalseNegatives)

• True positive percentage (TruePositivePct)

• False positive percentage (FalsePositivePct)

• True negative percentage (TrueNegativePct)

• False negative percentage (FalseNegativePct)

• Overall percentage (OverallPct)

• Sensitivity percentage (SensitivityPct)

• Specificity percentage (SpecificityPct)

12 CHAPTER 2. DATA TOOLS

Chapter 3

Evolving Fuzzy Neural
Networks Tools

3.1 Introduction

EFuNN was the first ECoS network. It is a five neuron layer feed forward
network, where each layer performs a specific function. The first neuron layer
is the input layer. The second layer is the condition layer. Each neuron in this
layer represents a single triangular fuzzy membership function (MF) attached to
a particular input, and performs fuzzification of the input values based on that
MF. This layer is not fully connected to the input layer, as each condition neuron
is connected to a single input neuron, that is, each input neuron is connected
to its own subset of condition neurons. The weight of the connection between
the condition neuron and its input defines the centre of the condition neuron’s
MF, where the lower and upper bounds of the MF are defined as the centres
of the neighbouring MF. The third layer of neurons is the evolving layer, which
is also referred to as the rule layer. The distance measure used in this layer
is the distance between the fuzzified input vector and the weight vector. The
fourth layer of neurons is the action layer: neurons in this layer represent fuzzy
membership functions attached to the output neurons. This layer is similar
to the input layer, in that each action neuron is connected only to the output
neuron with which its membership function is associated. Also, the value of
the connection weight connecting the action neuron to its output defines the
centre of the action neuron’s membership function. The activation function of
the action layer neurons is a simple saturated linear function. The final neuron
layer is the output layer. This calculates crisp output values from the fuzzy
output values produced by the action layer neurons. The output layer performs
centre of gravity defuzzification over the action layer activations to produce a
crisp output.

Figure 3.1 shows an idealised EFuNN with three input neurons. Two MF
are attached to the first input neuron, three to the second, and two to the third.
There are three rule neurons and two outputs, with two MF attached to each
output.

The data files loaded by the EFuNN tools must be in the data file format
produced by the tools in Chapter 2. The input and output data itself must be

13

14 CHAPTER 3. EFUNN TOOLS

Figure 3.1: EFuNN architecture

within the range of zero to unity.

3.2 CreateEFuNN

The CreateEFuNN tool will create a new EFuNN structure and write it to a file.
An example of this file is shown in Section A.2. The argument to this tool is a
parameter file of the following format:

Inputs 4

InputMF {3,3,3,3}

Rules 1

OutputMF {2,2,2}

Outputs 3

FileName "iris-EFuNN.wgt"

Where:
Inputs is the number of input neurons.
InputMF is an array that specifies how many MF to attach to each input neuron.
The number of elements in this array must match the number of inputs.
Rules is the number of neurons to put in the rule or evolving layer.
OutputMF is an array that specifies how many MF to attach to each output neu-
ron. The number of elements in this array must match the number of outputs.
Outputs is the number of output neurons.
FileName is a string specifying the path to write the EFuNN file to.

3.3 TrainEFuNN

The TrainEFuNN tool will load an EFuNN and data from file, perform ECoS
training over the EFuNN, then write the resulting network to a new file. A
training log file (see Section A.5) will also be written to file. The parameter file
format for this tool is as follows:

3.4. RECALLEFUNN 15

WeightFile "iris-EFuNN.wgt"

DestinationFile "iris-EFuNN-trn.wgt"

TrainingFile "iris.trn"

Epochs 1

RecallMethod "OneOfN"

ActivationThreshold 0.5

SensitivityThreshold 0.5

ErrorThreshold 0.01

LearningRateOne 0.5

LearningRateTwo 0.5

LogFile "iris.log"

RuleClustering "Linear"

MaxRuleNodes 1000

Where:
WeightFile is the EFuNN to train.
DestinationFile is the file to write the trained EFuNN to.
TrainingFile is a string argument specifying the data file to use to train the
EFuNN.
Epochs is the number of times the training data set will be presented to the
network. One epoch is usually enough.
RecallMethod is a string argument specifying which method to use to propagate
activations from the evolving layer. This must be either “OneOfN” or “ManyOfN”.
ActivationThreshold is used only with the “ManyOfN” recall method. Only
evolving layer neurons with activation values greater than this will have their
activations propagated. This parameter will be ignored if OneOfN recall is used.
SensitivityThreshold is the sensitivity threshold training parameter.
ErrorThreshold is the error threshold training parameter.
LearningRateOne is the learning rate one parameter.
LearningRateTwo is the learning rate two parameter.
LogFile is a string parameter specifying the file to write the training log to. If
this parameter is omitted, the training log will be written to standard output.
An example training log file is presented in Section A.5.
RuleClustering is a string argument that determines where in the evolving
layer new neurons will be inserted. Options are “Linear”, whereby new neurons
are added to the end of the evolving layer, and “MaxActivation”, where the
new neurons will be inserted next to the winning evolving layer neuron.
MaxRuleNodes is the maximum number of neurons allowed in the evolving layer.

3.4 RecallEFuNN

The RecallEFuNN tool will load an EFuNN and data file, perform a recall-only
operation over the EFuNN using the data, and write the output values only to
a new file. It takes a single argument, which is the name of a parameter file and
which must be of the following format:

WeightFile "iris-EFuNN-trn.wgt"

RecallFile "iris.trn"

OutputFile "iris-EFuNN.out"

RecallMethod "OneOfN"

16 CHAPTER 3. EFUNN TOOLS

ActivationThreshold 1.0

Where:
WeightFile is a string argument specifying the file name of the EFuNN to re-
call.
RecallFile is a string argument specifying the file name of the data to use to
recall the EFuNN.
OutputFile is a string argument specifying the file to write the output data to.
RecallMethod is a string parameter specifying the recall method of the EFuNN.
Must be either “OneOfN” or “ManyOfN”.
ActivationThreshold is the activation threshold parameter for ManyOfN re-
call. Ignored if OneOfN is used.

3.5 MakEFuNNLbl

The MakEFuNNLbl tool will extract labels from an EFuNN for each input and
output variable, and for each MF attached to those variables. These labels can
be edited so that they are more meaningful for the problem at hand, that is,
they can be changed from the defaults to reflect the actual variable and MF
names. These labels are of the same format as those produced by the MakM-
FLbl application (Section 7.2). An example label file is presented in Section
A.6, where the default labels have been retained. There are two mandatory
arguments for this application, as follows:

MakEFuNNLbl EFuNNFile LabelFile

Where:
EFuNNFile is the EFuNN to extract labels from.
LabelFile is the file to write the labels to.

3.6 REEFuNN

The REEFuNN tool is used to extract Zadeh-Mamdani fuzzy rules from a
trained EFuNN. An example of the kind of rule file generated from an EFuNN
is presented in Section A.8. There are three mandatory arguments to this tool,
as follows:

REEFuNN EFuNNFile LabelFile RuleFile

Where:
EFuNNFile is the EFuNN file to extract rules from.
LabelFile is the label file that assigns linguistic labels to the input and output
variables, and the input and output membership functions. This can be the
default labels generated by the MakEFuNNLbl tool (Section 3.5).
RuleFile is the file to write the fuzzy rules to.

3.7. RIEFUNN 17

3.7 RIEFuNN

This application will create an EFuNN from Zadeh-Mamdani fuzzy rules. An
example of the kind of rule file generated from an EFuNN is presented in Section
A.8. There are two mandatory arguments to this tool, as follows:

RIEFuNN RuleFile EFuNNFile

Where:
RuleFile is the fuzzy rule file to construct the EFuNN from.
EFuNNFile is the file to write the new EFuNN to.

18 CHAPTER 3. EFUNN TOOLS

Chapter 4

Simple Evolving
Connectionist Systems
Tools

4.1 Introduction

The Simple Evolving Connectionist System (SECoS) was proposed as a mini-
malist implementation of the ECoS algorithm, that is, it is an architecture that
has the minimum number of neuron layers necessary to learn data. Alterna-
tively, SECoS can be viewed as a minimalist EFuNN, with the fuzzification and
defuzzification components being removed. Lacking the fuzzification and de-
fuzzification mechanisms of EFuNN, the SECoS model was created for several
reasons. Firstly, they are intended as a simpler alternative to EFuNN. Since
they lack the fuzzification and defuzzification structures of EFuNN, SECoS are
much simpler to implement. Having fewer connection matrices and a smaller
number of neurons, there is much less processing involved in simulating a SECoS
network. They are also much easier to understand and analyse: while EFuNN
expands the dimensionality of the input and output spaces with its fuzzy logic
elements, SECoS deals with the input and output space ‘as is’. Therefore, rather
than dealing with a fuzzy problem space, SECoS deals with the problem space
directly. Each neuron that is added to the network during training represents a
point in the problem space, rather than a point in the expanded fuzzy problem
space. Secondly, for some situations, fuzzified inputs are not only unnecessary
but harmful to performance, as they lead to an increase in the dimensional-
ity of the input space and hence an increase in the number of evolving layer
neurons. Binary data sets are particularly vulnerable to this, as fuzzification
does nothing but increase the dimensionality of the input data. By removing
the fuzzification and defuzzification capabilities, the adaptation advantages of
EFuNN are retained while eliminating the disadvantages of fuzzification, specif-
ically by eliminating the need to select the number and parameters of the input
and output membership functions. For most applications, SECoS are able to
model the training data with fewer neurons in the evolving layer than an equiv-
alent EFuNN. A SECoS network consists of three layers of neurons: The input

19

20 CHAPTER 4. SECOS TOOLS

layer, with linear transfer functions; The evolving layer; And an output layer
with a simple saturated linear activation function. The distance measure used
in the evolving layer is the normalised Manhattan distance.

As with the EFuNN tools, the data files loaded by the SECoS tools must be
in the data file format produced by the tools in Chapter 2. The SECoS tools
also expect the input and output data to be within the range of zero to unity.

4.2 CreateSECoS

The CreateSECoS tool will create a new SECoS structure and write it to a file.
An example of this file format is in Section A.3. The argument to this tool is a
parameter file that must be of the following format:

Inputs 4

Hidden 1

Outputs 3

MinWeight 0.0

MaxWeight 1.0

FileName "iris-SECoS.wgt"

Where:
Inputs is the number of input neurons.
Hidden is the number of neurons to put in the rule or evolving layer. For
implementation reasons this cannot be less than one.
Outputs is the number of output neurons.
MinWeight is the minimum value of the initial connection weights.
MaxWeight is the maximum value of the initial connection weights.
FileName is a string specifying the path to write the new SECoS to.

4.3 TrainSECoS

The TrainSECoS tool will load a SECoS and data from file, perform ECoS
training over the SECoS, then write the resulting network to a new file. A
training log file (see Section A.5) will also be written to file or standard output.

WeightFile "iris-SECoS.wgt"

DestinationFile "iris-SECoS-trn.wgt"

TrainingFile "iris.trn"

Epochs 1

RecallMethod "OneOfN"

ActivationThreshold 0.5

SensitivityThreshold 0.5

ErrorThreshold 0.1

LearningRateOne 0.5

LearningRateTwo 0.5

RuleClustering "Linear"

LogFile "iris.log"

MaxRuleNodes 1000

4.4. RECALLSECOS 21

Where:
WeightFile is the SECoS to train.
DestinationFile is the file to write the trained SECoS to.
TrainingFile is a string argument specifying the data file to use to train the
SECoS.
Epochs is the number of times the training data set will be presented to the
network. One epoch is usually enough.
RecallMethod is a string argument specifying which method to use to propagate
activations from the evolving layer. This must be either “OneOfN” or “ManyOfN”.
ActivationThreshold is used only with the “ManyOfN” recall method. Only
evolving layer neurons with activation values greater than this will have their
activations propagated. This parameter will be ignored if OneOfN recall is used.
SensitivityThreshold is the sensitivity threshold training parameter.
ErrorThreshold is the error threshold training parameter.
LearningRateOne is the learning rate one parameter.
LearningRateTwo is the learning rate two parameter.
LogFile is a string parameter specifying the file to write the training log to. If
this parameter is omitted, the training log will be written to standard output.
An example training log file is presented in Section A.5.
RuleClustering is a string argument that determines where in the evolving
layer new neurons will be inserted. Options are “Linear”, whereby new neurons
are added to the end of the evolving layer, and “MaxActivation”, where the
new neurons will be inserted next to the winning evolving layer neuron.
MaxRuleNodes is the maximum number of neurons allowed in the evolving layer.

4.4 RecallSECoS

The RecallSECoS tool will load a SECoS and data file, perform a recall-only
operation over the SECoS using the data, and write the output values only to
a new file. It take a single argument, which is the name of a parameter file and
must be of the following format:

WeightFile "iris-SECoS-trn.wgt"

RecallFile "iris.trn"

OutputFile "iris-SECoS.out"

RecallMethod "OneOfN"

ActivationThreshold 1.0

Where:
WeightFile is a string argument specifying the file name of the SECoS to recall.
RecallFile is a string argument specifying the file name of the data to use to
recall the SECoS.
OutputFile is a string argument specifying the file to write the output data to.
RecallMethod is a string parameter specifying the recall method of the SECoS.
Must be either “OneOfN” or “ManyOfN”.
ActivationThreshold is the activation threshold parameter for ManyOfN recall.
Ignored if OneOfN is used.

22 CHAPTER 4. SECOS TOOLS

4.5 SECoSFRE

This application will extract Zadeh-Mamdani fuzzy rules from a trained SECoS
using externally supplied fuzzy membershp functions (MF). The MF can be
generated using the MakMF tool (Section 7.3). An example of the kind of fuzzy
rule file that is extracted from SECoS is presented in Section A.8. The argument
to the SECoSFRE tool is a parameter file, which must be of the following format:

NetworkFile "iris-SECoS-trn.wgt"

InputMFFile "iris-in.mf"

OutputMFFile "iris-out.mf"

RuleFile "iris-SECoS.rul"

Where:
NetworkFile is a string specifying the SECoS file to extract the fuzzy rules
from.
InputMFFile is a string argument specifying the file containing the input MF.
The number of variables in this file must match the number of inputs in the
SECoS.
OutputMFFile is a string argument specifying the file containing the output
MF. The number of variables in this file must match the number of outputs in
the SECoS.
RuleFile is a string argument specifying the file to write the extracted fuzzy
rules to.

4.6 SECoSFRI

The SECoSFRI tool will defuzzify a set of Zadeh-Mamdani fuzzy rules and use
them to construct a SECoS. This application has three mandatory arguments,
as follows:

SECoSFRI RuleFile SECoSFile Steps

Where:
RuleFile is the fuzzy rule file to construct the SECoS from.
SECoSFile is the file to write the constructed SECoS to.
Steps is the number of steps to use in the defuzzification of the antecendents
and consequents.

4.7 GetSECoSEx

The GetSECoSEx tool will extract the exemplars that are contained in the in-
put to evolving layer connection weights of a SECoS. These exemplars are the
prototypes that the SECoS uses to model new data. This application has two
mandatory arguments, as follows:

GetSECoSEx SECoSFile DataFile

4.8. COMPILESECOS 23

Where:
SECoSFile is the file to extract the exemplars from.
DataFile is the file to write the exemplars to. There will be one row for each
neuron in the evolving layer of the SECoS. The number of inputs will be equal
to the number of inputs in the SECoS. There will be no outputs.

4.8 CompileSECoS

Compiles a trained SECoS file into a code file that implements that particular
SECoS. The SECoS in the code file produced is fixed and cannot be further
trained but can be recalled. Five languages are supported by this tool: C++,
C#, Python, Java and PHP.

CompileSECoS SECoSFile Classname [CPP, CS, PY, JV, PHP]

Where:
SECoSFile is the SECoS weight file to compile.
Classname is the name to give to the class that is output in code.
[CPP, CS, PY, JV] choose one (without the brackets), specifies which language
to output. CPP is C++, CS is C#, PY is Python, JV is Java and PHP is PHP.

Examples of the code produced by this tool, and how to use it, are included
in the eg/CompileSECoS subdirectory of the ECoS Toolbox. These examples
were all compiled from the same SECoS network, which was trained on the iris
data set.

The Java output portion of the compiler output was created with the assis-
tance of Binglan Han.

24 CHAPTER 4. SECOS TOOLS

Chapter 5

Evolving Clustering
Method Tools

5.1 Introduction

The evolving clustering method (ECM) is an application of the ECoS principles
to data clustering. This is based on the concept of dynamically adding and
modifying the clusters as new data is presented, where the modification to the
clusters affects both the position of the clusters and the size of the cluster,
in terms of a radius parameter associated with each cluster that determines
the boundaries of that cluster. ECM has only one parameter, which drives
the addition of clusters, known as the distance threshold Dthr. When new
clusters are added, their centres are set to equal the example that triggered
their creation, and the radius R of a new cluster is initially set to zero. R grows
as more vectors are allocated to the cluster. Due to the mechanism by which
R is updated, it cannot exceed Dthr. There are two tools available for ECM.
The first, TrainECM, will create the cluster centers and R values of the clusters.
The second, ClusterECM, uses these cluster centres and R values to cluster a
complete data set.

As before, the data files loaded by the ECM tools must be in the data file
format produced by the tools in Chapter 2. Although the tools described in this
chapter do not expect the data to be normalised, better results will be obtained
if the data is normalised.

5.2 TrainECM

The TrainECM tool will create a set of cluster centres and cluster R values for a
data set. This can be done incrementally, that is, existing centres and R values
can be loaded and modified, or they can be created from scratch.

SourceFile "iris.trn"

DistanceThreshold 0.1

SourceCentresFile "iris_centres1.dat"

SourceRValuesFile "iris_R_values1.dat"

CentresFile "iris_centres2.dat"

25

26 CHAPTER 5. ECM TOOLS

RValuesFile "iris_R_Values2.dat"

DistanceMeasure "Euclidean"

Where:
SourceFile is a string parameter giving the name of the data file to cluster.
DistanceThreshold is the Dthr parameter.
SourceCentresFile is an optional string parameter that specifies an existing
cluster centres file to load.
SourceRValuesFile is an optional string parameter that specifies an existing
R values file to load. If SourceCentresFile is used, then SourceRValuesFile

must also be present.
CentresFile is a string parameter that specifies the filename to save the cluster
centres to. This is in the data file format.
RValuesFile is a string parameter that specifies the filename to save the R
values to. This is also in the data file format.
DistanceMeasure is a string parameter that specifies which distance measure
to use. This parameter was included for future growth: the only permissible
option at this time is Euclidean.

5.3 ClusterECM

This application will perform clustering using the centres and R values produced
by the TrainECM tool (Section 5.2).

SourceFile "iris.trn"

CentresFile "iris_centres1.dat"

RValuesFile "iris_R_Values1.dat"

MapFile "iris_map.dat"

ClusterPrefix "iris-"

ClusterSuffix ".dat"

DistanceMeasure "Euclidean"

SizesFile "ECM_Cluster_Sizes.dat"

Where:
SourceFile is a string parameter giving the name of the data file to cluster.
CentresFile is a string parameter giving the name of the cluster centres file to
load.
RValuesFile is a string parameter giving the name of the R values file to load.
MapFile is a string parameter specifying the file to save the cluster map to. This
map specifies which cluster each data row is assigned to. There are therefore as
many rows in this file as there are in SourceFile.
ClusterPrefix is the prefix for each cluster data file. There will be one file for
each cluster, and each will have this prefix, followed by a unique, sequential,
number, then the suffix specified by the ClusterSuffix parameter.
DistanceMeasure is a string parameter that specifies which distance measure
to use. This parameter was included for future growth: the only permissible
option at this time is Euclidean.
SizesFile is a string parameter giving the name of the data file to save the size
of each cluster to. That is, the number of vectors in each cluster.

Chapter 6

Nominal-scale Evolving
Connectionist Systems
Tools

6.1 Introduction

A NECoS network consists of three layers of neurons: The first layer is the
input layer, where each neuron corresponds to a single input variable. Each
input neuron has a set of “signal counters” associated with it, with there being
one counter for each of the classes associated with that particular variable.
Whenever an input vector is propagated through the input layer, the signal
counters for each neuron are updated, with the signal counter for the class
observed at each neuron being incremented.; The evolving layer; And an output
layer with a simple saturated linear activation function. The similarity measure
used in the evolving layer is the similarity coefficient.

As with the EFuNN and SECoS tools, the data files loaded by theNSECoS
tools must be in the data file format produced by the tools in Chapter 2. The
NECoS tools also expect the output data to be within the range of zero to unity.
The input data, however, is assumed to be numerical labels. That is, a number
is a label for a particular category. The numbers are therefore not constrained
to any particular range.

The learning algorithm for NECoS networks is based heavily upon the stan-
dard ECoS algorithm. The only difference between the two is the manner in
which learning is affected in the input to evolving layer of connections. In the
standard ECoS algorithm, the amount the incoming weight vector moves closer
to the input vector is determined by the learning rate one parameter (η1), where
a higher η1 corresponds to a greater change. It is desirable to maintain this se-
mantic in the NECoS training algorithm. Whereas the standard ECoS learning
algorithm alters the weights in the input to evolving layer so that the neuron
is spatially closer to I, in NECoS this would not make sense, because nominal
scale weights do not describe a position is space. Instead, the learning algorithm
is based on the concept of making the incoming weight vector more similar to
I by changing some of the connection labels to match the labels in I, where

27

28 CHAPTER 6. NECOS TOOLS

the degree to which the incoming weight vector is changed is determined by η1.
This is achieved by the following algorithm:

• Find each connection Wi,j that does not match the corresponding element
c of Ii, that is, find the mismatching incoming connections of j. Let nm
be the number of mismatched connections, m be the set of mismatched
connections, and Ic be the set of mismatched input vector class labels.

• For each mismatched connection mc find, from the input neuron signal
counters, the corresponding frequency fc of the target category for that
input.

• Rank the mismatching connections mr in descending order of fc.

• Calculate the number of connections to change nc = dη1nm.

• For each of the top nc connections in mr, set Wi,j to Ii

Thus, the mismatching connections are changed to equal the most frequently
occurring class labels, thereby making the incoming weight vector more similar
to the current input vector.

6.2 CreateNECoS

The CreateNECoS tool will create a new NECoS structure and write it to a file.
An example of this file format is in Section A.4. The argument to this tool is a
parameter file that must be of the following format:

Inputs 4

Hidden 1

Outputs 3

FileName "lenses-NECoS.wgt"

DistanceMeasure "SimilarityMeasure"

Where:
Inputs is the number of input neurons.
Hidden is the number of neurons to put in the rule or evolving layer. For
implementation reasons this cannot be less than one.
Outputs is the number of output neurons.
FileName is a string specifying the path to write the new SECoS to.
DistanceMeasure specifies the similarity measure to use. At the moment only
SimilarityCoefficient can be used.

6.3 TrainNECoS

The TrainNECoS tool will load a NECoS and data from file, perform ECoS
training over the NECoS, then write the resulting network to a new file. A
training log file (see Section A.5) will also be written to file or standard output.

6.4. RECALLNECOS 29

WeightFile "lenses-NECoS.wgt"

DestinationFile "lenses-NECoS-trn.wgt"

TrainingFile "lenses.trn"

Epochs 1

SensitivityThreshold 0.5

ErrorThreshold 0.1

LearningRateOne 0.5

LearningRateTwo 0.5

RuleClustering "Linear"

LogFile "iris.log"

MaxRuleNodes 1000

Where:
WeightFile is the NECoS to train.
DestinationFile is the file to write the trained NECoS to.
TrainingFile is a string argument specifying the data file to use to train the
NECoS.
Epochs is the number of times the training data set will be presented to the
network. One epoch is usually enough.
SensitivityThreshold is the sensitivity threshold training parameter.
ErrorThreshold is the error threshold training parameter.
LearningRateOne is the learning rate one parameter.
LearningRateTwo is the learning rate two parameter.
LogFile is a string parameter specifying the file to write the training log to. If
this parameter is omitted, the training log will be written to standard output.
An example training log file is presented in Section A.5.
RuleClustering is a string argument that determines where in the evolving
layer new neurons will be inserted. Options are “Linear”, whereby new neurons
are added to the end of the evolving layer, and “MaxActivation”, where the
new neurons will be inserted next to the winning evolving layer neuron.
MaxRuleNodes is the maximum number of neurons allowed in the evolving layer.

6.4 RecallNECoS

The RecallNECoS tool will load a trained NECoS and data file, perform a recall-
only operation over the NECoS using the data, and write the output values only
to a new file. It take a single argument, which is the name of a parameter file
and must be of the following format:

WeightFile "lenses-NECoS-trn.wgt"

RecallFile "lenses.trn"

OutputFile "lenses-NECoS.out"

Where:
WeightFile is a string argument specifying the file name of the NECoS to re-
call.
RecallFile is a string argument specifying the file name of the data to use to
recall the NECoS.
OutputFile is a string argument specifying the file to write the output data to.

30 CHAPTER 6. NECOS TOOLS

6.5 GetNECoSEx

The GetNECoSEx tool will extract the exemplars that are contained in the in-
put to evolving layer connection weights of a NECoS. These exemplars are the
prototypes that the NECoS uses to model new data. This application has two
mandatory arguments, as follows:

GetNECoSEx NECoSFile DataFile

Where:
NECoSFile is the file to extract the exemplars from.
DataFile is the file to write the exemplars to. There will be one row for each
neuron in the evolving layer of the NECoS. The number of inputs will be equal
to the number of inputs in the NECoS. The number of outputs will be equal to
the number of outputs in the NECoS.

6.6 GetNECoSSignals

The GetNECoSSignals tools will extract the signals counter data from a trained
NECoS network. These are the category labels and the number of times each
of those categories has been seen by each input neuron.

GetNECoSSignals NECoSFile

Where:
NECoSFile is the file to extract the signals from.

The output places the data for each input on one line. The start of the line
is the tag InputN, where N is the number of the input, followed by an array of
pairs of numbers in the format X:Y, where X is the category label and Y is the
count. For example:

Input0 {0:8,1:8,2:8}

Input1 {0:12,1:12}

Input2 {0:12,1:12}

Input3 {0:12,1:12}

Chapter 7

Fuzzy Membership
Function and Fuzzy Rule
Tools

7.1 Introduction

The fuzzy tools included in the ECoS Toolbox are intended to be used for two
activities. Firstly, the evaluation of fuzzy rules extracted from EFuNN and
SECoS. Secondly, to support the extraction of fuzzy rules from SECoS. Only
Zadeh-Mamdani rules are supported at this time.

7.2 MakMFLbl

The MakMFLbl tool is used to generate label files of the format needed to
generate fuzzy MF files using the MakMF application (Section 7.3). The label
files only describe the names (labels) attached to each variable and MF and not
the type or parameters of the MF themselves. The labels generated must be
manually edited if the user wants to change the defaults. Labels cannot contain
spaces or other special characters. An example of a label file is shown in Section
A.6. The argument to the MakMFLbl tool is the name of a parameter file,
which is of the following format.

InputMF {3,3,3,3}

OutputMF {2,2,2}

LabelFile "iris.lbl"

Where:
InputMF is an array with one entry for each input variable. The number of
input variables is inferred from the length of this array.
OutputMF is an array with one entry for each output variable. Again, the num-
ber of output variables is inferred from the length of this array.
LabelFile is a string that specifies the file to write the labels to.

31

32 CHAPTER 7. FUZZY TOOLS

The label file produced by these parameters is shown in Section A.6, where
the default labels have been retained.

7.3 MakMF

This tool is used to create fuzzy MF files from labels. The label file is produced
using the MakMFLbl tool (Section 7.2). An example of the file format produced
by this tool is presented in Section A.7. The MakMF application takes a single
argument, which is the name of a parameter file of the following format:

LabelFile "iris.lbl"

MFType "Triangular"

InputMFSetFile "iris-in.mf"

OutputMFSetFile "iris-out.mf"

Where:
LabelFile is a string argument specifying the name of the label file. The num-
ber of variables and the number of MF attached to each variable, as well as the
labels for each variable and MF, are all inferred from this file.
MFType is a string argument specifying the type of the MF to construct. Cur-
rently, the only option is “Triangular”.
InputMFSetFile is a string argument specifying the file to save the input MF
set to.
OutputMFSetFile is a string argument specifying the file to save the output MF
set to.

The input MF set file produced by these parameters is presented in Section
A.7, where the labels have been changed from the default to better reflect the
iris data set.

7.4 GetNumMF

This tool is used to analyse fuzzy MF files and will write to standard output the
number of MF attached to each variable. There is one mandatory argument, as
follows:

GetNumMF MFFile

Where:
MFFile is the file containing the MF to analyse.

The output of this tool is a line displaying the number of MF attached to
each variable. There will be one number for each variable.

7.5 FR2MF

This tool will extract the fuzzy MF from a Zadeh-Mamdani fuzzy rule file and
write them to separate files. There are three mandatory arguments, as follows:

7.6. MPLOTMF 33

FR2MF RuleFile InputMFFile OutputMFFile

Where:
RuleFile is the fuzzy rule file to extract the MF from.
InputMFFile is the file to write the input MF to.
OutputMFFile is the file to write the output MF to.

7.6 mPlotMF

This application will produce MATLAB code to plot the MF in the specified file.

mPlotMF MFFile mFile xSteps PlotTitle

Where:
MFFile is the file to read the MF from.
mFile is the file to write the MATLAB code to.
xSteps is the number of points on the x-axis of the plot, that is, the number of
points to use to plot the MF.
PlotTitle is the title of the plot. This should be in quotes.

The code this tool produces has been confirmed to work with the free MAT-
LAB clone Octave.

7.7 SFIE

This tool will perform a simplified fuzzy inference over a fuzzy rule set. Only
the best-matching fuzzy rule is allowed to activate. This better matches the
semantics of ECoS networks and therefore provides a better method of fuzzy
inference for fuzzy rules that have been extracted from ECoS networks. This
application has four mandatory and one optional argument, as follows:

SFIE RuleFile InputDataFile OutputDataFile MFInferenceMethod Steps

Where:
RuleFile is the fuzzy rule file.
InputDataFile is the file to read the input data from.
OutputDataFile is the file to write the output data to.
MFInferenceMethod is the inference method to use. Options are “Max” or
“Prod”.
Steps is the number of steps to use in the defuzzification step. This is an
optional argument.

34 CHAPTER 7. FUZZY TOOLS

Appendix A

File Formats

A.1 Data File Format

This file is a subset of the famous iris data set. There are thirty rows in this
file, with four input variables and three output variables. Tags in this and
the following file formats are contained in square brackets. The Rows, Inputs
and ExpectedOutputs tags specify the number of data row, input and output
variables respectively. The GeneratedOutputs and Error tags were included
for future developments and are not used by the ECoS toolbox. All of the data
is between the Data and ~Data tags. This data file is included in the toolbox
as iris.trn.

[FormatVersion = 1.0]

[DataSet]

[Rows = 30]

[Inputs = 4]

[ExpectedOutputs = 3]

[GeneratedOutputs = 0]

[Error = 0]

[Data]

0.30555555555487 0.708333333332903 0.0847457627118434 0.0416666666666575 1 0 0

0.194444444443714 0 0.423728813559217 0.374999999999994 0 1 0

0.611111111110549 0.499999999999696 0.694915254237116 0.791666666666665 0 0 1

0.138888888888136 0.583333333332978 0.101694915254212 0.0416666666666575 1 0 0

0.444444444443815 0.416666666666413 0.542372881355798 0.583333333333329 0 1 0

0.58333333333276 0.291666666666489 0.728813559321854 0.749999999999998 0 0 1

0.138888888888136 0.416666666666413 0.0677966101694747 0 1 0 0

0.472222222221604 0.0833333333332827 0.508474576271061 0.374999999999994 0 1 0

0.694444444443916 0.416666666666413 0.762711864406591 0.833333333333332 0 0 1

0 0.416666666666413 0.0169491525423687 0 1 0 0

0.499999999999393 0.374999999999772 0.627118644067642 0.541666666666662 0 1 0

0.388888888888237 0.208333333333207 0.677966101694748 0.791666666666665 0 0 1

0.416666666666026 0.833333333332826 0.0338983050847374 0.0416666666666575 1 0 0

0.361111111110448 0.374999999999772 0.440677966101586 0.499999999999995 0 1 0

35

36 APPENDIX A. FILE FORMATS

0.416666666666026 0.333333333333131 0.694915254237116 0.958333333333333 0 0 1

0.388888888888237 0.999999999999392 0.0847457627118434 0.124999999999992 1 0 0

0.666666666666127 0.458333333333055 0.576271186440535 0.541666666666662 0 1 0

0.58333333333276 0.499999999999696 0.728813559321854 0.916666666666666 0 0 1

0.30555555555487 0.791666666666185 0.0508474576271061 0.124999999999992 1 0 0

0.361111111110448 0.416666666666413 0.593220338982904 0.583333333333329 0 1 0

0.611111111110549 0.416666666666413 0.762711864406591 0.708333333333331 0 0 1

0.222222222221503 0.62499999999962 0.0677966101694747 0.0833333333333246 1 0 0

0.416666666666026 0.291666666666489 0.525423728813429 0.374999999999994 0 1 0

0.944444444444017 0.749999999999544 0.966101694915015 0.874999999999999 0 0 1

0.388888888888237 0.749999999999544 0.118644067796581 0.0833333333333246 1 0 0

0.527777777777182 0.0833333333332827 0.593220338982904 0.583333333333329 0 1 0

0.944444444444017 0.249999999999848 0.999999999999753 0.916666666666666 0 0 1

0.222222222221503 0.749999999999544 0.0847457627118434 0.0833333333333246 1 0 0

0.361111111110448 0.208333333333207 0.491525423728692 0.416666666666661 0 1 0

0.472222222221604 0.0833333333332827 0.677966101694748 0.583333333333329 0 0 1

[~Data]

[~DataSet]

A.2 EFuNN File Format

This file is for an EFuNN with four input neurons with three MF attached
to each. There is only one neuron in the rule layer. There are three output
neurons with two MF attached to each. Basic information on the sturcture
of the network is defined in the block delimited by the NetworkInformation

and~NetworkInformation tags. Information about the individual neuron layers
is between Layer and ~Layer tags. The LayerType tag specifies which type of
neurons are in the layer.The FuzzyCondition layer represents the input MF,
while the output MF are specified in the Defuzzify. layer. Layer 0 is included
for future growth and is not used by EFuNN. Information on the connection
weight layers is delimited by the ConnectionLayer and ~ConnectionLayer tags.
The LayerFrom and LayerTo tags specify which neuron layers the connections
connect. For the connections from layer 1 to 2 in EFuNN the connection weights
specify the centres of each MF. There is a single entry for each connection, where
the From and To tags specify which neurons in layers 1 and two the connections
are between. There is a matrix of connections between layers 2 and 3, and 3 and
4 (since there is only one rule neuron in this example, these matrices take the
forms of single columns and rows, respectively). Comments in this file format
follow the C-style, that is, they are started with /* and ended with */. The
weights from neuron layer 4 to neuron layer 5 are of the same format as those
from layers 1 to 2. This file is included in the toolbox as iris-EFuNN.wgt.

[FormatVersion = 1.0]

[NeuralNetwork]

[NetworkType = EFuNN]

[NetworkInformation]

A.2. EFUNN FILE FORMAT 37

[NumberOfLayers = 6]

[InputLayer = 1]

[OutputLayer = 5]

[NumberOfInputs = 4]

[NumberOfOutputs = 3]

[~NetworkInformation]

[Layer = 0]

[LayerType = Simple]

[NumberOfNeurons = 0]

[All ActivationFunction=null]

[~Layer]

[Layer = 1]

[LayerType = Input]

[NumberOfNeurons = 4]

[All ActivationFunction=linear]

[~Layer]

[Layer = 2]

[LayerType = FuzzyCondition]

[NumberOfNeurons = 12]

[All ActivationFunction=FuNN-condition]

[InputMF]

[Input=0 MF=3]

[Input=1 MF=3]

[Input=2 MF=3]

[Input=3 MF=3]

[~InputMF]

[~Layer]

[Layer = 3]

[LayerType = EFuNNRule]

[NumberOfNeurons = 1]

[All ActivationFunction=saturated-linear]

[~Layer]

[Layer = 4]

[LayerType = Simple]

[NumberOfNeurons = 6]

[All ActivationFunction=saturated-linear]

[~Layer]

[Layer = 5]

[LayerType = Defuzzify]

[NumberOfNeurons = 3]

[All ActivationFunction=cog]

[OutputMF]

[Output=0 MF=2]

[Output=1 MF=2]

38 APPENDIX A. FILE FORMATS

[Output=2 MF=2]

[~OutputMF]

[~Layer]

[ConnectionLayer]

[LayerFrom = 1]

[LayerTo = 2]

[ConnectionType = ToConditionConnections]

[Attributes Pruneable Freezable]

[WeightList]

[From=0 To=0 Weight=0.000000000000000 Trainable]

[From=0 To=1 Weight=0.500000000000000 Trainable]

[From=0 To=2 Weight=1.000000000000000 Trainable]

[From=1 To=3 Weight=0.000000000000000 Trainable]

[From=1 To=4 Weight=0.500000000000000 Trainable]

[From=1 To=5 Weight=1.000000000000000 Trainable]

[From=2 To=6 Weight=0.000000000000000 Trainable]

[From=2 To=7 Weight=0.500000000000000 Trainable]

[From=2 To=8 Weight=1.000000000000000 Trainable]

[From=3 To=9 Weight=0.000000000000000 Trainable]

[From=3 To=10 Weight=0.500000000000000 Trainable]

[From=3 To=11 Weight=1.000000000000000 Trainable]

[~WeightList]

[~ConnectionLayer]

[ConnectionLayer]

[LayerFrom = 2]

[LayerTo = 3]

[ConnectionType = FullyConnected]

[Attributes UnPrunable UnFreezable]

[Matrix Weights]

/* To-> 0 From */

0.105807672353282 /* 0 */

0.386974700155644 /* 1 */

0.114749595629749 /* 2 */

0.461378826258126 /* 3 */

0.600665303506577 /* 4 */

0.838251899777215 /* 5 */

0.0805993835261086 /* 6 */

0.223914304025391 /* 7 */

0.475173192541276 /* 8 */

0.300515762810144 /* 9 */

0.719534897915586 /* 10 */

0.380413220618305 /* 11 */

[~Matrix]

[~ConnectionLayer]

[ConnectionLayer]

[LayerFrom = 3]

[LayerTo = 4]

A.3. SECOS FILE FORMAT 39

[ConnectionType = FullyConnected]

[Attributes UnPrunable UnFreezable]

[Matrix Weights]

/* To-> 0 1 2

0.335154271065401 0.0858180486465041 0.207251197851497

3 4 5 From */

0.567827387310404 0.275917844172491 0.389263588366344 /* 0 */

[~Matrix]

[~ConnectionLayer]

[ConnectionLayer]

[LayerFrom = 4]

[LayerTo = 5]

[ConnectionType = ToOutputConnections]

[Attributes Pruneable Freezable]

[WeightList]

[From=0 To=0 Weight=0.000000000000000 Trainable]

[From=1 To=0 Weight=1.000000000000000 Trainable]

[From=2 To=1 Weight=0.000000000000000 Trainable]

[From=3 To=1 Weight=1.000000000000000 Trainable]

[From=4 To=2 Weight=0.000000000000000 Trainable]

[From=5 To=2 Weight=1.000000000000000 Trainable]

[~WeightList]

[~ConnectionLayer]

[~NeuralNetwork]

A.3 SECoS File Format

The tags in the SECoS file format have the same meaning as those in the EFuNN
file format. The SECoS in this example has four input neurons, one neuron in
the evolving layer, and three neurons in the output layer. This file is included
in the toolbox as iris-SECoS.wgt.

[FormatVersion = 1.0]

[NeuralNetwork]

[NetworkType = SECoS]

[NetworkInformation]

[NumberOfLayers = 4]

[InputLayer = 1]

[OutputLayer = 3]

[NumberOfInputs = 4]

[NumberOfOutputs = 3]

[~NetworkInformation]

[Layer = 0]

[LayerType = Simple]

40 APPENDIX A. FILE FORMATS

[NumberOfNeurons = 0]

[All ActivationFunction=null]

[~Layer]

[Layer = 1]

[LayerType = Input]

[NumberOfNeurons = 4]

[All ActivationFunction=linear]

[~Layer]

[Layer = 2]

[LayerType = SECoSRule]

[NumberOfNeurons = 1]

[All ActivationFunction=saturated-linear]

[~Layer]

[Layer = 3]

[LayerType = Gain]

[NumberOfNeurons = 3]

[All ActivationFunction=saturated-linear]

[All Gain=1.000000000000000]

[~Layer]

[ConnectionLayer]

[LayerFrom = 1]

[LayerTo = 2]

[ConnectionType = FullyConnected]

[Attributes UnPrunable UnFreezable]

[Matrix Weights]

/* To-> 0 From */

0.254341257972961 /* 0 */

0.405438398388623 /* 1 */

0.337137974181341 /* 2 */

0.590990936002686 /* 3 */

[~Matrix]

[~ConnectionLayer]

[ConnectionLayer]

[LayerFrom = 2]

[LayerTo = 3]

[ConnectionType = FullyConnected]

[Attributes UnPrunable UnFreezable]

[Matrix Weights]

/* To-> 0 1 2 From */

0.770012512588885 0.503372295297098 0.197485274819178 /* 0 */

[~Matrix]

[~ConnectionLayer]

[~NeuralNetwork]

A.4. NECOS FILE FORMAT 41

A.4 NECoS File Format

The tags in the NECoS file format have the same meaning as those in the
SECoS file format. The only differences are that the NECoS file format include a
NumberOfCategories tag for each input neuron, which counts how many unique
categories the neuron has encountered during training, and a SignalCounts tag
for each category that counts how many times each unique category has been
encountered. The NECoS in this example has four input neurons, one neuron
in the evolving layer, and three neurons in the output layer. The first input has
three categories and the other three have two each. This file is included in the
toolbox as lenses-NECoS.wgt.

[FormatVersion = 1.0]

[NeuralNetwork]

[NetworkType = NECoS]

[NetworkInformation]

[NumberOfLayers = 4]

[InputLayer = 1]

[OutputLayer = 3]

[NumberOfInputs = 4]

[NumberOfOutputs = 3]

[~NetworkInformation]

[Layer = 0]

[LayerType = Simple]

[NumberOfNeurons = 0]

[All ActivationFunction=null]

[~Layer]

[Layer = 1]

[LayerType = NECoSInputLayer]

[NumberOfNeurons = 4]

[All ActivationFunction=linear]

[NECoSInputLayer]

[NECoSInputNeuron]

[Index = 0]

[NumberOfCategories = 3]

[SignalCounts]

[Category=0.0000000 Count=8.0000000]

[Category=1.0000000 Count=8.0000000]

[Category=2.0000000 Count=8.0000000]

[~SignalCounts]

[~NECoSInputNeuron]

[NECoSInputNeuron]

[Index = 1]

[NumberOfCategories = 2]

[SignalCounts]

[Category=0.0000000 Count=12.0000000]

42 APPENDIX A. FILE FORMATS

[Category=1.0000000 Count=12.0000000]

[~SignalCounts]

[~NECoSInputNeuron]

[NECoSInputNeuron]

[Index = 2]

[NumberOfCategories = 2]

[SignalCounts]

[Category=0.0000000 Count=12.0000000]

[Category=1.0000000 Count=12.0000000]

[~SignalCounts]

[~NECoSInputNeuron]

[NECoSInputNeuron]

[Index = 3]

[NumberOfCategories = 2]

[SignalCounts]

[Category=0.0000000 Count=12.0000000]

[Category=1.0000000 Count=12.0000000]

[~SignalCounts]

[~NECoSInputNeuron]

[~NECoSInputLayer]

[~Layer]

[Layer = 2]

[LayerType = NECoSEvolvingLayer]

[NumberOfNeurons = 13]

[All ActivationFunction=saturated-linear]

[NECoSEvolvingLayer]

[DistanceMeasure = SimilarityCoefficient]

[NumVariables = 4]

[~NECoSEvolvingLayer]

[~Layer]

[Layer = 3]

[LayerType = Gain]

[NumberOfNeurons = 3]

[All ActivationFunction=saturated-linear]

[All Gain=1.000000000000000]

[~Layer]

[ConnectionLayer]

[LayerFrom = 1]

[LayerTo = 2]

[ConnectionType = FullyConnected]

[Attributes UnPrunable UnFreezable]

[Matrix Weights]

/* To-> 0 1 2 3 4 5 6 7 8 9 10 11 12 From */

0 0 2 2 2 2 0 2 1 1 2 2 2 /* 0 */

0 0 1 1 0 1 1 0 0 1 0 0 1 /* 1 */

0 0 0 1 1 0 1 1 0 1 0 0 1 /* 2 */

0 0 1 0 1 0 1 0 1 1 0 1 1 /* 3 */

A.5. ECOS TRAIN LOG FORMAT 43

[~Matrix]

[~ConnectionLayer]

[ConnectionLayer]

[LayerFrom = 2]

[LayerTo = 3]

[ConnectionType = FullyConnected]

[Attributes UnPrunable UnFreezable]

[Matrix Weights]

/* To-> 0 1 2 From */

0 0 0 /* 0 */

0 0 1 /* 1 */

0 1.20956420898438 0 /* 2 */

0 0 1.20956420898438 /* 3 */

1.1611328125 0 0 /* 4 */

0 0 1.1611328125 /* 5 */

1 0 0 /* 6 */

0 0 1.1611328125 /* 7 */

0 1 0 /* 8 */

0 0 1 /* 9 */

0 0 1 /* 10 */

0 0 1 /* 11 */

0 0 1 /* 12 */

[~Matrix]

[~ConnectionLayer]

[~NeuralNetwork]

A.5 ECoS Train Log Format

This is an example of the output produced by the training tools for EFuNN
and SECoS networks. The training in this example was performed over the
iris data set shown in Section A.1. There is one line for each training example
(“Pattern”) and they are numbered from zero. There is one “Error” tag for
each output neuron, and they are numbered according to the output neuron they
correspond to. The error is the absolute difference between the target output
value for that training example and the output value produced by the output
neuron. The “MaxAct” tag is the maximum activation value of the evolving
layer neurons, while the “MinAct” tag is the minimum activation value. The
tag “AddNode” is inserted if a new node or neuron is added to the evolving
layer. This is followed by the position in which the neuron is inserted into the
evolving layer. Finally, the “Nodes” tag displays the total number of neurons
in the evolving layer after any further neurons were inserted.

This training log is included in the toolbox as iris.log. Some line wrapping
has been done here to improve readability.

Pattern 0 Error0 1 Error1 0 Error2 0 MaxAct 0.719596 MinAct 0.719596

AddNode {1} Nodes 2

44 APPENDIX A. FILE FORMATS

Pattern 1 Error0 0.0404229 Error1 0 Error2 0 MaxAct 0.959577 MinAct 0.738633

Nodes 2

Pattern 2 Error0 0.0104003 Error1 0 Error2 0 MaxAct 0.9896 MinAct 0.7171

Nodes 2

Pattern 3 Error0 0.0361882 Error1 0 Error2 0 MaxAct 0.963812 MinAct 0.753686

Nodes 2

Pattern 4 Error0 0.0708647 Error1 0 Error2 0 MaxAct 0.929135 MinAct 0.714791

Nodes 2

Pattern 5 Error0 0.0276322 Error1 0 Error2 0 MaxAct 0.972368 MinAct 0.698651

Nodes 2

Pattern 6 Error0 0.0593512 Error1 0 Error2 0 MaxAct 0.940649 MinAct 0.697417

Nodes 2

Pattern 7 Error0 0.0639847 Error1 0 Error2 0 MaxAct 0.936015 MinAct 0.68262

Nodes 2

Pattern 8 Error0 0.0607172 Error1 0 Error2 0 MaxAct 0.939283 MinAct 0.723116

Nodes 2

Pattern 9 Error0 0.060977 Error1 0 Error2 0 MaxAct 0.939023 MinAct 0.695157

Nodes 2

Pattern 10 Error0 0.731681 Error1 1 Error2 0 MaxAct 0.731681 MinAct 0.703446

AddNode {2} Nodes 3

Pattern 11 Error0 0 Error1 0.0180347 Error2 0 MaxAct 0.981965 MinAct 0.687876

Nodes 3

Pattern 12 Error0 0 Error1 0.0380879 Error2 0 MaxAct 0.961912 MinAct 0.680499

Nodes 3

Pattern 13 Error0 0 Error1 0.033123 Error2 0 MaxAct 0.966877 MinAct 0.70973

Nodes 3

Pattern 14 Error0 0 Error1 0.0317255 Error2 0 MaxAct 0.968275 MinAct 0.698362

Nodes 3

Pattern 15 Error0 0 Error1 0.178486 Error2 0 MaxAct 0.821514 MinAct 0.673798

AddNode {3} Nodes 4

Pattern 16 Error0 0 Error1 0.0578015 Error2 0 MaxAct 0.942199 MinAct 0.656024

Nodes 4

Pattern 17 Error0 0 Error1 0.0838016 Error2 0 MaxAct 0.916198 MinAct 0.74489

Nodes 4

Pattern 18 Error0 0 Error1 0.0529611 Error2 0 MaxAct 0.947039 MinAct 0.716135

Nodes 4

Pattern 19 Error0 0 Error1 0.0760903 Error2 0 MaxAct 0.92391 MinAct 0.642379

Nodes 4

Pattern 20 Error0 0 Error1 0.884834 Error2 1 MaxAct 0.884834 MinAct 0.634055

AddNode {4} Nodes 5

Pattern 21 Error0 0 Error1 0 Error2 0.0513654 MaxAct 0.948635 MinAct 0.624757

Nodes 5

Pattern 22 Error0 0 Error1 0 Error2 0.0366107 MaxAct 0.963389 MinAct 0.631379

Nodes 5

Pattern 23 Error0 0 Error1 0.892364 Error2 1 MaxAct 0.892364 MinAct 0.679992

AddNode {5} Nodes 6

Pattern 24 Error0 0 Error1 0 Error2 0.0818112 MaxAct 0.918189 MinAct 0.61293

Nodes 6

Pattern 25 Error0 0 Error1 0 Error2 0.0569604 MaxAct 0.94304 MinAct 0.669393

Nodes 6

A.6. FUZZY MF LABEL FILE FORMAT 45

Pattern 26 Error0 0 Error1 0 Error2 0.0549021 MaxAct 0.945098 MinAct 0.637114

Nodes 6

Pattern 27 Error0 0 Error1 0 Error2 0.054068 MaxAct 0.945932 MinAct 0.631904

Nodes 6

Pattern 28 Error0 0 Error1 0.935515 Error2 1 MaxAct 0.935515 MinAct 0.658472

AddNode {6} Nodes 7

Pattern 29 Error0 0 Error1 0 Error2 0.0800894 MaxAct 0.919911 MinAct 0.561931

Nodes 7

A.6 Fuzzy MF Label File Format

This file describes the names or labels attached to each variable and membership
function (MF) in a fuzzy MF set. It does not describe the structure of the MF
or rules themselves. These labels are used to extract fuzzy rules from EFuNN
(using the REEFuNN tool, Section 3.6) and for creating sets of MF for fuzzy rule
extraction from SECoS (using the MakMF and SECOSFRE tools respectively, Sec-
tions 7.3 and 4.5). Information on the number of variables and MF attached to
each is contained in the StructureInfo block. The labels attached to the input
variables are in the InputLabels block, while the labels attached to the input
MF are in the InputMFLabels. These labels can all be edited, but they must
not contain spaces or other special characters. The output variable labels are in
the OutputLables block and the output MF labels are in the OutputMFLabels

block. This file is included in the toolbox as iris.lbl.

[FuNNLabels]

[StructureInfo]

[Inputs = 4]

[InputMF]

[Input=0 MF=3]

[Input=1 MF=3]

[Input=2 MF=3]

[Input=3 MF=3]

[~InputMF]

[Outputs = 3]

[OutputMF]

[Output=0 MF=2]

[Output=1 MF=2]

[Output=2 MF=2]

[~OutputMF]

[~StructureInfo]

[InputLabels]

[Input=0 Label=InputA]

[Input=1 Label=InputB]

[Input=2 Label=InputC]

46 APPENDIX A. FILE FORMATS

[Input=3 Label=InputD]

[~InputLabels]

[InputMFLabels]

[Condition=0 Label=A]

[Condition=1 Label=B]

[Condition=2 Label=C]

[Condition=3 Label=A]

[Condition=4 Label=B]

[Condition=5 Label=C]

[Condition=6 Label=A]

[Condition=7 Label=B]

[Condition=8 Label=C]

[Condition=9 Label=A]

[Condition=10 Label=B]

[Condition=11 Label=C]

[~InputMFLabels]

[OutputLabels]

[Output=0 Label=OutputA]

[Output=1 Label=OutputB]

[Output=2 Label=OutputC]

[~OutputLabels]

[OutputMFLabels]

[Action=0 Label=A]

[Action=1 Label=B]

[Action=2 Label=A]

[Action=3 Label=B]

[Action=4 Label=A]

[Action=5 Label=B]

[~OutputMFLabels]

[~FuNNLabels]

A.7 Fuzzy MF File Format

This file describes a set of fuzzy membership functions for four variables. There
are three MF attached to each variable. The information for individual MF are
in the blocks delimited with MF and ~MF. All of the MF attached to a variable are
in blocks delimited with MFSetInfo and ~MFSetInfo. An MFList contains the
MF information for several variables. The MF specified in this file are triangular
MF. This file in included in the toolbox as iris-in.mf.

[MFList]

[MFListInfo]

[VariablesRepresented = 4]

[ListName = Inputs]

A.7. FUZZY MF FILE FORMAT 47

[~MFListInfo]

[MFSet]

[MFSetInfo]

[Name=SepalLength Index=0 Type=Triangular]

[LowerBound=0.0000000 UpperBound=1.0000000]

[NumberOfMF = 3]

[~MFSetInfo]

[MF]

[Name=Short Index=0 Type=LeftShoulderedTriangular]

[Centre=0.0000000 RightBound=0.5000000]

[~MF]

[MF]

[Name=Medium Index=1 Type=Triangular]

[LeftBound=0.0000000 Centre=0.5000000 RightBound=1.0000000]

[~MF]

[MF]

[Name=Long Index=2 Type=RightShoulderedTriangular]

[LeftBound=0.5000000 Centre=1.0000000]

[~MF]

[~MFSet]

[MFSet]

[MFSetInfo]

[Name=SepalWidth Index=1 Type=Triangular]

[LowerBound=0.0000000 UpperBound=1.0000000]

[NumberOfMF = 3]

[~MFSetInfo]

[MF]

[Name=Short Index=0 Type=LeftShoulderedTriangular]

[Centre=0.0000000 RightBound=0.5000000]

[~MF]

[MF]

[Name=Medium Index=1 Type=Triangular]

[LeftBound=0.0000000 Centre=0.5000000 RightBound=1.0000000]

[~MF]

[MF]

[Name=Long Index=2 Type=RightShoulderedTriangular]

[LeftBound=0.5000000 Centre=1.0000000]

[~MF]

48 APPENDIX A. FILE FORMATS

[~MFSet]

[MFSet]

[MFSetInfo]

[Name=PetalLength Index=2 Type=Triangular]

[LowerBound=0.0000000 UpperBound=1.0000000]

[NumberOfMF = 3]

[~MFSetInfo]

[MF]

[Name=Short Index=0 Type=LeftShoulderedTriangular]

[Centre=0.0000000 RightBound=0.5000000]

[~MF]

[MF]

[Name=Medium Index=1 Type=Triangular]

[LeftBound=0.0000000 Centre=0.5000000 RightBound=1.0000000]

[~MF]

[MF]

[Name=Long Index=2 Type=RightShoulderedTriangular]

[LeftBound=0.5000000 Centre=1.0000000]

[~MF]

[~MFSet]

[MFSet]

[MFSetInfo]

[Name=PetalWidth Index=3 Type=Triangular]

[LowerBound=0.0000000 UpperBound=1.0000000]

[NumberOfMF = 3]

[~MFSetInfo]

[MF]

[Name=Short Index=0 Type=LeftShoulderedTriangular]

[Centre=0.0000000 RightBound=0.5000000]

[~MF]

[MF]

[Name=Medium Index=1 Type=Triangular]

[LeftBound=0.0000000 Centre=0.5000000 RightBound=1.0000000]

[~MF]

[MF]

[Name=Long Index=2 Type=RightShoulderedTriangular]

[LeftBound=0.5000000 Centre=1.0000000]

[~MF]

A.8. FUZZY RULE FILE FORMAT 49

[~MFSet]

[~MFList]

A.8 Fuzzy Rule File Format

This file describes the fuzzy rules extracted from an ECoS network for the iris
problem. The rules are in the same format whether they are extracted from
EFuNN or SECoS. The fuzzy MF used to extract the rules are embedded in
the fuzzy rule file and are of the same format as in Section A.7. Following the
fuzzy MF, in the block delimited by the RuleList and ~RuleList tags, are the
fuzzy rules. Each fuzzy rule starts with if and each atom of the antecedents
and consequents are delimited by < and >. The antecedents and consequents are
delimited by then. The numbers at the end of each atom are certainty factors.

This file is included in the toolbox as iris.rul. Some line-wrapping has
been done for clarity.

[FormatVersion = 1.0]

[FuzzyRules]

[RuleType = SECoSFRE]

[MFList]

[MFListInfo]

[VariablesRepresented = 4]

[ListName = Inputs]

[~MFListInfo]

[MFSet]

[MFSetInfo]

[Name=SepalLength Index=0 Type=Triangular]

[LowerBound=0.0000000 UpperBound=1.0000000]

[NumberOfMF = 3]

[~MFSetInfo]

[MF]

[Name=Short Index=0 Type=LeftShoulderedTriangular]

[Centre=0.0000000 RightBound=0.5000000]

[~MF]

[MF]

[Name=Medium Index=1 Type=Triangular]

[LeftBound=0.0000000 Centre=0.5000000 RightBound=1.0000000]

[~MF]

[MF]

[Name=Long Index=2 Type=RightShoulderedTriangular]

50 APPENDIX A. FILE FORMATS

[LeftBound=0.5000000 Centre=1.0000000]

[~MF]

[~MFSet]

[MFSet]

[MFSetInfo]

[Name=SepalWidth Index=1 Type=Triangular]

[LowerBound=0.0000000 UpperBound=1.0000000]

[NumberOfMF = 3]

[~MFSetInfo]

[MF]

[Name=Short Index=0 Type=LeftShoulderedTriangular]

[Centre=0.0000000 RightBound=0.5000000]

[~MF]

[MF]

[Name=Medium Index=1 Type=Triangular]

[LeftBound=0.0000000 Centre=0.5000000 RightBound=1.0000000]

[~MF]

[MF]

[Name=Long Index=2 Type=RightShoulderedTriangular]

[LeftBound=0.5000000 Centre=1.0000000]

[~MF]

[~MFSet]

[MFSet]

[MFSetInfo]

[Name=PetalLength Index=2 Type=Triangular]

[LowerBound=0.0000000 UpperBound=1.0000000]

[NumberOfMF = 3]

[~MFSetInfo]

[MF]

[Name=Short Index=0 Type=LeftShoulderedTriangular]

[Centre=0.0000000 RightBound=0.5000000]

[~MF]

[MF]

[Name=Medium Index=1 Type=Triangular]

[LeftBound=0.0000000 Centre=0.5000000 RightBound=1.0000000]

[~MF]

[MF]

[Name=Long Index=2 Type=RightShoulderedTriangular]

A.8. FUZZY RULE FILE FORMAT 51

[LeftBound=0.5000000 Centre=1.0000000]

[~MF]

[~MFSet]

[MFSet]

[MFSetInfo]

[Name=PetalWidth Index=3 Type=Triangular]

[LowerBound=0.0000000 UpperBound=1.0000000]

[NumberOfMF = 3]

[~MFSetInfo]

[MF]

[Name=Short Index=0 Type=LeftShoulderedTriangular]

[Centre=0.0000000 RightBound=0.5000000]

[~MF]

[MF]

[Name=Medium Index=1 Type=Triangular]

[LeftBound=0.0000000 Centre=0.5000000 RightBound=1.0000000]

[~MF]

[MF]

[Name=Long Index=2 Type=RightShoulderedTriangular]

[LeftBound=0.5000000 Centre=1.0000000]

[~MF]

[~MFSet]

[~MFList]

[MFList]

[MFListInfo]

[VariablesRepresented = 3]

[ListName = Outputs]

[~MFListInfo]

[MFSet]

[MFSetInfo]

[Name=IrisSetosa Index=0 Type=Triangular]

[LowerBound=0.0000000 UpperBound=1.0000000]

[NumberOfMF = 2]

[~MFSetInfo]

[MF]

[Name=IsNot Index=0 Type=LeftShoulderedTriangular]

[Centre=0.0000000 RightBound=1.0000000]

52 APPENDIX A. FILE FORMATS

[~MF]

[MF]

[Name=Certain Index=1 Type=RightShoulderedTriangular]

[LeftBound=0.0000000 Centre=1.0000000]

[~MF]

[~MFSet]

[MFSet]

[MFSetInfo]

[Name=IrisVersicolor Index=1 Type=Triangular]

[LowerBound=0.0000000 UpperBound=1.0000000]

[NumberOfMF = 3]

[~MFSetInfo]

[MF]

[Name=IsNot Index=0 Type=LeftShoulderedTriangular]

[Centre=0.0000000 RightBound=0.5000000]

[~MF]

[MF]

[Name=UnCertain Index=1 Type=Triangular]

[LeftBound=0.0000000 Centre=0.5000000 RightBound=1.0000000]

[~MF]

[MF]

[Name=Certain Index=2 Type=RightShoulderedTriangular]

[LeftBound=0.5000000 Centre=1.0000000]

[~MF]

[~MFSet]

[MFSet]

[MFSetInfo]

[Name=IrisVirginica Index=2 Type=Triangular]

[LowerBound=0.0000000 UpperBound=1.0000000]

[NumberOfMF = 3]

[~MFSetInfo]

[MF]

[Name=IsNot Index=0 Type=LeftShoulderedTriangular]

[Centre=0.0000000 RightBound=0.5000000]

[~MF]

[MF]

[Name=UnCertain Index=1 Type=Triangular]

[LeftBound=0.0000000 Centre=0.5000000 RightBound=1.0000000]

A.8. FUZZY RULE FILE FORMAT 53

[~MF]

[MF]

[Name=Certain Index=2 Type=RightShoulderedTriangular]

[LeftBound=0.5000000 Centre=1.0000000]

[~MF]

[~MFSet]

[~MFList]

[RuleList]

if <SepalLength is Long 0.655448> and <SepalWidth is Long 0.589892> and

<PetalLength is Long 0.70782> and <PetalWidth is Long 0.886445>

then <IrisSetosa is IsNot 1> and <IrisVersicolor is IsNot 1> and

<IrisVirginica is Certain 1>

if <SepalLength is Medium 0.601663> and <SepalWidth is Medium 0.69268> and

<PetalLength is Medium 0.597808> and <PetalWidth is Medium 0.563703>

then <IrisSetosa is IsNot 1> and <IrisVersicolor is IsNot 1> and

<IrisVirginica is Certain 1>

if <SepalLength is Long 0.727569> and <SepalWidth is Medium 0.687862> and

<PetalLength is Long 0.667716> and <PetalWidth is Medium 0.502216>

then <IrisSetosa is IsNot 1> and <IrisVersicolor is IsNot 1> and

<IrisVirginica is Certain 1>

if <SepalLength is Long 0.691592> and <SepalWidth is Long 0.553499> and

<PetalLength is Long 0.528793> and <PetalWidth is Long 0.609417>

then <IrisSetosa is IsNot 1> and <IrisVersicolor is IsNot 1> and

<IrisVirginica is Certain 1>

if <SepalLength is Long 0.741096> and <SepalWidth is Long 0.534557> and

<PetalLength is Medium 0.527419> and <PetalWidth is Medium 0.644126>

then <IrisSetosa is IsNot 1> and <IrisVersicolor is Certain 1> and

<IrisVirginica is IsNot 1>

if <SepalLength is Long 0.561781> and <SepalWidth is Long 0.597345> and

<PetalLength is Medium 0.906948> and <PetalWidth is Medium 0.95859>

then <IrisSetosa is Certain 1> and <IrisVersicolor is IsNot 1> and

<IrisVirginica is IsNot 1>

if <SepalLength is Long 0.502386> and <SepalWidth is Medium 0.746384> and

<PetalLength is Medium 0.706567> and <PetalWidth is Medium 0.827206>

then <IrisSetosa is IsNot 1> and <IrisVersicolor is Certain 1> and

<IrisVirginica is IsNot 1>

if <SepalLength is Medium 0.639418> and <SepalWidth is Medium 0.640534> and

<PetalLength is Medium 0.840115> and <PetalWidth is Medium 0.793157>

54 APPENDIX A. FILE FORMATS

then <IrisSetosa is Certain 0.770013> and

<IrisVersicolor is UnCertain 0.993255> and <IrisVirginica is IsNot 0.605029>

[~RuleList]

[~FuzzyRules]

